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ABSTRACT: The automatic gain control (AGC) and the kicker feedback (KF)

are two essential feedback loops in the tune tracker phase locked loop system.

Unfortunately, these two systems if designed incorrectly can in principle fight each

other and thus produce a loop that is far from ideal. We will propose a combined

AGC and KF loop that ensures that both parts will be optimal. Both analytic

solutions and computer simulations will also be discussed.



INTRODUCTION

Contained in the tune tracker phase locked loop (PLL) system1 are two important

feedback loops which keep the SQNR (signal to quantized noise ratio) high for the digital

analogue converters. These two loops are the automatic gain control (AGC) and the kicker

feedback (KF) loops. If these two loops are designed incorrectly, they have the potential

of cancelling out each other and thus produce results that will be far from ideal. We will

propose a way of decoupling these two loops by defining the working range for each of

them.

We will analyze the AGC and the KF independently first and then combine them

together to form an ideal multi-loop system. Note that AGCs are essentially non-linear

systems but for particular types of variable gain amplifiers (VGA) and loop filters, there

is an analytic solution2. This solution can also be easily extended for solving KF and so

we will use this for the KF also.

Finally, we will combine the AGC and KF together and define their working ranges.

With the working range defined, we can simulate their behaviour as the beam response

changes. The simulation confirms that by partitioning the working range of the AGC and

KF, they will work optimally.
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AGC

The block diagram of one possible AGC implementation is shown in Figure 1. The

input voltage Vin of the AGC for the tune tracker is usually a sinusoid i.e.

Vain(t) = Vai sinωt (1)

where ω is the frequency of the tune tracker kicker.

The output voltage Vaout of the AGC is

Vaout(t) = Vao sin(ωt+ φ) (2)

where Vao is the peak output voltage and we have introduced φ, a phase shift between the

input and the output because the AGC can introduce such a shift. In general, when the

input voltage Vai is in some finite range between Va1 and Va2, the AGC keeps Vao ≈ kVar
where Var is the reference voltage set by the user and k is some constant.

Looking at Figure 1, we start the analysis at the variable gain amplifier (VGA). The

VGA changes its gain ga according to the control voltage Vac. We choose the following

equation to govern this change because we want to have an analytic solution of the AGC

loop afterwards

ga(Vac) = Gae
−αaVac (3)

where Ga > 0 and αa > 0 are constant parameters of the VGA.

The rms detector converts its sinusoidal input into a constant voltage that is propor-

tional to the rms value of the input, i.e.

Varms = Vao

√
1
Ta

∫ Ta

0
dt sin2(ωt+ φ) (4)

where the integration time is chosen so that Ta � 2π/ω. For large enough Ta, the argument

under the square root of (4) is approximately equal to 1/2 and thus

Varms ≈ 1√
2
Vao (5)
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Figure 1 An implementation of the AGC. This type of AGC is
similar to the one described in the paper “The Tevatron Tune Tracker
PLL — Theory, Implementation and Measurements”1.

This equation, (5), gives us an opportunity to simplify our approach to the problem:

instead of considering sinusoids as the input and output, we can instead just calculate the

behaviour of the AGC with the peak voltage of the sinusoids, i.e. Vai and Vao. In fact,

Vai and Vao can be time dependent and they are the envelope of the carrier sinusoid. The

simplified system that we will analyze is shown in Figure 2.

The analysis now continues along the lines of Ohlson2: the lowpass filter (LPF) of

Figure 1 will be approximated with an integrator which starts integrating at t = 0 with

va0 = va(0). Next, we proceed by finding Vao and va(t) in terms of Vai. From (3), we can

take the first derivative w.r.t. t to get

ġa = −αagav̇a ⇒ v̇a = − ġa
gaαa

(6)
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Figure 2 The equivalent AGC circuit that we can solve analytically.
Notice that we only need to consider the peak values of the sinusoid.

where we have made the identification Vac → va and “·” is the time derivative.

Next, as we have indicated in Figure 2,

v̇a = Ka

(
1√
2
Vao − Var

)
(7)

If we go through the integrator, we will recover v(t). However, this will not give us v(t) in

terms of Vai and so we will do it via an indirect route. We substitute (6) into (7) to find

that

ġa +Kagaαa

(
1√
2
Vao − Var

)
= 0 (8)

But Vao = gaVai and thus (8) becomes

ġa + 1√
2
KaαaVaig

2
a −KaαaVarga = 0 (9)
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This differential equation is known as Bernoulli’s equation and has the following solution

ga[va(t)] =

[
e−t/τa
ga(va0)

+
1

Var
√

2

∫ t

0
dξ

1
τa
e−(t−ξ)/τaVai(ξ)

]−1

=

[
eαva0−t/τa

Ga
+

1
Var
√

2
ha ∗ Vai

]−1





(10)

where τa = 1/KaαaVar, “∗” is the convolution operator and we have defined ha to be

ha(t) =





1
τa
e−t/τa t ≥ 0

0 t < 0
(11)

Finally, va(t) is found by solving for it by taking logarithms of (3) and substituting in (10)

for ga

va(t) =
1
αa

log
[
eαava0−t/τa +

Ga

Var
√

2
ha ∗ Vai(t)

]
(12)

Vao is found by using Vao = gaVai and thus

Vao(t) = Vai

[
eαava0−t/τa

Ga
+

1
Var
√

2
ha ∗ Vai

]−1

(13)

Example

The time response with two steps in Vai for this AGC when Ga = 4, Ka = 300, αa = 1,

va0 = 0 and Var = 0.5 is shown in Figure 3. From this, we see that at steady state Vko is

at Var
√

2 = 0.707. The error which is (Vao/
√

2− Var) is also zero at steady state. This is

exactly how we expect the AGC to work.
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Figure 3 This shows the time response of the AGC when there are
two steps in Vai. The steady state value of Vko is expected to be at
Var
√

2 = 0.5×√2 = 0.707 and the error is also zero at steady state.

KF

The block diagram of an implementation of KF is shown in Figure 4. In the analysis of

the KF, we can borrow many of the equations from the AGC section by simply remapping

a→ k.

We will use the same VGA, and so its gain gk varies according to the control voltage

Vkc

gk(Vkc) = Gke
αkVkc (14)

The source of the kicker sine wave Vin is set at a fixed amplitude, i.e. Vki = constant.

Vkin = Vki sinωt (15)

The sine wave after the VGA is used to kick the beam. The measured amplitude of the

sine wave after going through the beam is dependent on the frequency ω of the kick. If the
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Figure 4 An implementation of the KF.

Figure 5 The equivalent KF circuit that we can solve analytically.
Note the similarity to the AGC circuit shown in Figure 2.
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beam has a transfer function G̃BR(ω), then the measured amplitude is ∼ |VkiG̃BR|. Thus

if we define GBR to be the “gain” from the beam, then we can define a new variable VBR

which is the voltage seen at the pickup to be

VBR = Vkigk(Vkc)GBR(t) (16)

Note that GBR is in principle complex, but the rms detector is blind to phase and thus

for our purposes, we will let GBR ∈ R. Furthermore, GBR is also time dependent because

as the tune tracker PLL moves closer (or further) from resonance, GBR increases (or

decreases).

We continue our analysis of Figure 5,

v̇k = Kk

(
1√
2
VBR − Vkr

)
(17)

and in the spirit of the previous section, we substitute (6) with a→ k into (17), we have

ġk +Kkgkαk

(
1√
2
VBR − Vkr

)
= 0 (18)

We substitute (16) into (18) to get Bernoulli’s equation again

ġk + 1√
2
KkVkiαkGBRg

2
k −KkαkVkrgk = 0 (19)

And thus, the solutions are

vk(t) =
1
αk

log
[
eαvk0−t/τk +

VkiGk
Vkr
√

2
hk ∗GBR(t)

]
(20)

and using Vko = gkVki

Vko(t) = Vki

[
eαkvk0−t/τk

Gk
+

Vki
Vkr
√

2
hk ∗GBR

]−1

(21)

where τk = 1/KkαkVkr and hk(t) has the same definition as ha(t) of (11) with a→ k.
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Example

The time response with two steps in GBR for this KF when Gk = 4, Kk = 100, αk = 1,

vk0 = 0 and Vkr = 0.25 is shown in Figure 6. From this, we see that Vko decreases when

GBR increases which is exactly what we expect. This means that as the tune tracker PLL

heads towards resonance (GBR increases) the size of the kick Vko decreases. As a check,

we see that VBR/
√

2 = Vkr = 0.25 which is again exactly what we expect.

It is important to keep in mind that the KF regulates using the magnitude of the beam

response GBR. Therefore, in the real world implementation of KF, we have to calculate

GBR = VBR/Vko.

Figure 6 This is the time response of the KF when there are two
steps in the beam response GBR. We expect that Vko decreases when
GBR increases and VBR/

√
2 = Vkr = 0.25 at steady state.
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COMBINING AGC AND KF

To combine the AGC and KF into one system and to ensure that they operate in such

a manner as to not interfere or fight with each other, we must define carefully the working

range for each of them.

For the AGC, its output voltage Vao in response to the input voltage Vai is to behave in

the manner shown in Figure 7. In the real world, for sufficiently small signals say Va1 < Vai,

the AGC is unable to regulate because the VGA has insufficient gain. Therefore, the output

Vao scales linearly w.r.t. the input. For the input range Va1 < Vai < Va2, which is in the

working range of the AGC, the output is regulated and approximately constant at Var
√

2

(if we use the rms detector). And finally, above Va2, in some real world implementations,

Va2 = Var
√

2 because VGAs cannot attenuate.

Figure 7 The response of the AGC that we have defined. The
AGC does not regulate below Va1 and above Va2.

For the KF response to work optimally with the AGC, its working range has to be

defined. See Figure 8. For small beam responses 0 ≤ GBR < GBR1, the KF’s kicker

voltage Vko will be as large as possible (and not blow up the beam emittance) so that the
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output signal VBR is approximately constant. Above GBR1, the KF stops regulating but

keeps Vko constant. GBR1 is chosen so that for Vko = VBR/GBR1 there is no measurable

emittance growth in this range and VBR is within the working range of the AGC. For

GBR2 < GBR < GBR3, the beam response has become large enough so that Vko should

be reduced to prevent emittance growth. For GBR > GBR3 or Vko = VBR/GBR3, some

real world implementations necessitate that the KF become non-regulatory because Vko

cannot be smaller than Vki.

Figure 8 The response of a KF. The KF does not regulate between
GBR1 and GBR2 and above GBR3.

The combined AGC and KF circuit is shown in Figure 9. The AGC circuit is drawn

in red and blue while the KF circuit is drawn in black and green. The position of the

switches shown here have been set to the case when both GBR and VBR are in range. The

green part of the KF circuit is used when GBR is out of range and the blue part of the

AGC circuit is used when VBR is out of range. wk is set to the most recent value of vk

and similarly wa is also set to the most recent value of va.
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Figure 9 The combined AGC (red and blue) and KF (black and
green) circuit. The position of the switches are for the case when both
GBR and VBR are in range. The green part of the KF circuit is used
when GBR is out of range and the blue part of the AGC circuit is
used when VBR is out of range.

The Simulation

For the simulations of this circuit, we allow GBR to ramp up and down. This mimics

the situation where the tune tracker PLL approaches the beam resonance and then leaves it.

The AGC and KF parameters are set to the values discussed in the AGC and KF sections

13



plus the working range of the AGC has been set to Va1 = 0.15 V and Va2 = 2.0 V and the

non-regulatory range of the KF has been set to between GBR1 = 0.4 and GBR2 = 0.8. The

results of the simulation are shown in Figure 10. In this and subsequent figures, the working

range of the AGC is the region shaded both in grey and cyan while the non-regulatory

range of the KF is the cyan region.

We will discuss the simulation shown in Figure 10 by zooming into each part separately:

(i) 0.0 s to 0.2 s (Figure 11): At the start of the simulation for a fixed GBR, KF

increases Vko so that VBR becomes larger. At 0.05 s, VBR reaches the threshold

where the AGC starts regulating and Vao approaches a constant value once this

threshold is crossed.

(ii) 0.5 s to 1.5 s (Figure 12): As GBR increases (the tune tracker PLL moves

towards resonance), Vko becomes smaller because it does not need to kick as hard

to give the same VBR. Once GBR gets within the cyan band (above 1.15 s), the

KF stops regulating and Vko no longer increases but keeps a constant value. In this

time interval, Vao still remains constant because VBR is within the working range

of the AGC.

(iii) 1.5 s to 2.5 s (Figure 13): As GBR continues to increase (the tune tracker PLL

gets close to resonance), GBR gets outside the cyan band. Once outside the cyan

band, the KF starts regulating and decreases the kick to the beam by lowering Vko.

During this time, the AGC is still working and keeps Vao approximately constant.

(iv) 2.5 s to 5.0 s (Figure 14): In this final simulation interval, as GBR is reduced

(the tune tracker PLL moving away from resonance), between 3.2 s and 3.7 s, the

kick is set to a constant value because the KF stops regulation. Once GBR leaves

the cyan region above 3.7 s, the KF starts regulating and increases Vko to keep

VBR within the AGC working range.
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Figure 10 These are the overall results of the simulation described
in the text. The band shaded both grey and cyan is the regulation
range of the AGC. The area outside the cyan band is the regulation
range of the KF.

Figure 11 The first 0.2 s of the simulation.
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Figure 12 The simulation from 0.5 s to 1.5 s.

Figure 13 The simulation from 1.5 s to 2.5 s.
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Figure 14 The simulation from 2.5 s to 5.0 s.

Settings Guide

When the combined AGC and KF circuits are used for the tune tracker PLL, we

recommend that Var, Va1, Va2, Vki, Vkr, GBR1, and GBR2 be set to the following starting

values. Machine studies should determine their final values. (Note that GBR3 is not a

settable parameter because it comes from VBR becoming so large that reducing Vko to Vki

does not decrease VBR.)

(i) Var: The AGC reference voltage should be set so that Var
√

2 is approximately

half the maximum input voltage of the downstream analogue to digital converter

(ADC).

(ii) Va: This should be set to about Var/4.

(iii) Va: If the VGA cannot attenuate, then Va2 = Var
√

2.

(iv) Vkr: When the KF is regulating, VBR = Vkr
√

2. Therefore, Vkr should be set to

between Var/2 to Var.
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(v) Vki: If the VGA cannot attenuate, Vki should be set so that when the beam is

kicked at this level, the signal at the tune tracker detector is larger by about 6 dB.

(vi) GBR: Set to about 6 dB above the base of the frequency response.

(vii) GBR: Set to about 6 dB below the resonance of the frequency response.

When setting up the final values for GBR1 and GBR2, we must take the care to not

blow the emittance up.

CONCLUSION

We have shown how the AGC and KF can be combined so that they will work in

synergy. The idea is to partition the working ranges of both the AGC and KF so that

they do not compete with each other. A computer simulation of this combined loop for a

changing beam response has been demonstrated plus analytic solutions have been derived

for each individual loop.
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